Instrucciones básicas de Matlab para tratamiento de datos

Os dejo a continuación una serie de instrucciones básicas que podéis utilizar en Matlab para realizar cálculos estadísticos básicos.

Importar datos de un fichero Excel

>> datos=xlsread(‘Ejercicio 4’)

Número de filas y columnas

>> size(datos)

Dimensión más grande de una matriz

>> length(datos)

Ordena los elementos de forma ascendente

>> sort(datos)

Ordena los elementos de forma descendente

>> sort(datos,’descend’)

Suma de los datos

>> sum(datos)

Producto de los datos

>> prod(datos)

Vector de sumas acumuladas

>> cumsum(datos)

Vector de productos acumulados

>> cumprod(datos)

Calcular la media aritmética

>> mean(datos)

Calcular la mediana

>> median(datos)

Calcular la moda de la muestra

>> mode(datos)

Calcular la media aritmética omitiendo el 5% de datos de cada lado

>> trimmean(datos,10)

Calcular la media geométrica de una muestra

>> geomean(datos)

Calcular la media armónica de una muestra

>> harmmean(datos)

Calcular el sesgo de la muestra

>> skewness(datos)

Calcular la curtosis de los datos

>> kurtosis(datos)

Varianza muestral

>> var(datos)

Desviación estándar muestral

>> std(datos)

 

Rango de los datos

>> range(datos)

El menor valor

>> min(datos)

El mayor valor

>> max(datos)

Desviación absoluta respecto a la media

>> mad(datos)

Momento central de orden 3 respecto a la media

>> moment(datos,3)

Rango intercuartílico

>> iqr(datos)

Primer cuartil (percentil 25)

>> prctile(datos, 25)

Percentil del 5%

>> prctile(datos,5)

Dibujar un diagrama de caja

>> boxplot(datos)

Dibujar el histograma de datos

>> hist(datos)

Dibujar la distribución de frecuencia acumulada

>> cdfplot(datos)

Visualización de funciones de probabilidad

>> disttool

Ajuste de modelos de distribución a conjunto de datos

>> dfittool

Matriz 3×3 de números aleatorios entre 0 y 1

>> rand(3)

Matriz 3×2 de números aleatorios entre 0 y 1

>> rand(3,2)

Matriz 3×3 de números aleatorios normales de media 0 y varianza 1

>> randn(3)

Matriz 3×2 de números aleatorios normales de media 0 y varianza 1

>> randn(3,2)

Secuencia de 5 valores aleatorios normales de desviación estándar de 2,5 y media 3

>> rand(1,5)*2.5+3