UPV



Resultados de la búsqueda By Etiquetas: algoritmo


Teoría del valor extremo y optimización estructural

A continuación dejo una presentación que hicimos para el VII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados MAEB 2010, que se celebró en Valencia del 8 al 10 de septiembre de 2010.

El artículo, denominado “Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural” establece un criterio de parada para un algoritmo multiarranque de búsqueda exhaustiva de máximo gradiente basado en una codificación Gray aplicado a la optimización de bóvedas de hormigón. Para ello se ha comprobado que los óptimos locales encontrados constituyen valores extremos que ajustan a una función Weibull de tres parámetros, siendo el de  posición, γ, una estimación del óptimo global que puede alcanzar el algoritmo. Se puede estimar un intervalo de confianza para γ ajustando una distribución Weibull a muestras de  óptimos locales extraídas mediante una técnica bootstrap de los óptimos disponibles. El algoritmo multiarranque se detendrá cuando se acote el intervalo de confianza y la diferencia entre el menor coste encontrado y el teórico ajustado a dicha función Weibull.

Referencia:

YEPES, V.; CARBONELL, A.; GONZÁLEZ-VIDOSA, F. (2010). Teoría del valor extremo como criterio de parada en la optimización heurística de bóvedas de hormigón estructural. Actas del VII Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados MAEB 2010, Valencia, 8-10 septiembre, pp. 553-560. Garceta Grupo Editorial. ISBN: 978-84-92812-58-5.

12 junio, 2015
 
|   Etiquetas: ,  ,  ,  ,  |  

Automatic design of concrete vaults using iterated local search and extreme value estimation

La optimización de estructuras reales de hormigón armado constituye un campo de gran interés no sólo en la investigación, sino en la aplicación real en obra. Os paso un artículo reciente donde se explica una forma de optimizar bóvedas de hormigón empleadas habitualmente en pasos inferiores como falsos túneles. Los ahorros que se pueden conseguir, en este caso, han sido de un 7% respecto a un diseño tradicional. En el caso de obras lineales de gran longitud, los ahorros pueden ser nada despreciables. La revista Latin American Journal of Solids and Structures es una revista en abierto, de donde podéis descargaros éste y otros artículos de interés.

13 marzo, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

¿Qué son las metaheurísticas?

¿Cómo se podrían optimizar en tiempos de cálculo razonable problemas complejos de redes de transporte, estructuras de hormigón (puentes, pórticos de edificación, túneles, etc.) y otro tipo de problemas de decisión empresarial cuando la dimensión del problema es de tal calibre que es imposible hacerlo con métodos matemáticos exactos? La respuesta son los métodos aproximados, también denominados heurísticas. Este post divulgativo trata de ampliar otros anteriores  donde ya hablamos de los algoritmos, de la optimización combinatoria, de los modelos matemáticos y otros temas similares. Para más adelante explicaremos otros temas relacionados específicamente con aplicaciones a problemas reales. Aunque para los más curiosos, os paso en abierto, una publicación donde se han optimizado con éxito algunas estructuras de hormigón como muros, pórticos o marcos de carretera: (González et al, 2008). (más…)

22 febrero, 2015
 
|   Etiquetas: ,  ,  ,  |  

Optimización y programación matemática

 

George Bernard Dantzig (1914-2005), “padre de la programación lineal”

Optimizar significa buscar la mejor manera de realizar una actividad, y en términos matemáticos, hallar el máximo o mínimo de una cierta función, definida en algún dominio. La optimización constituye un proceso para encontrar la mejor solución de un problema donde “lo mejor” se concilia con criterios establecidos previamente.

La programación matemática constituye un campo amplio de estudio que se ocupa de la teoría, aplicaciones y métodos computacionales para resolver los problemas de optimización condicionada. En estos modelos se busca el extremo de una función objetivo sometida a un conjunto de restricciones que deben cumplirse necesariamente. Las situaciones que pueden afrontarse con la programación matemática se suelen presentar en ingeniería, empresas comerciales y en ciencias sociales y físicas.

Con carácter general, un programa matemático (ver Minoux, 1986) consiste en un problema de optimización sujeto a restricciones en  de la forma:

 

El vector  x tiene como componentes (más…)

20 febrero, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

¿Qué es la optimización combinatoria?

Problema de las rutas de vehículos. Ejemplo de optimización combinatoria.

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, reciben el nombre de problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor de entre un número finito o numerable de soluciones viables. Sin embargo la enumeración de este conjunto resulta prácticamente imposible, aún para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y gestión de operaciones y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

¿Qué es un algoritmo?

Algoritmo de Euclides

Un algoritmo es un conjunto prescrito de reglas o instrucciones bien definidas para la resolución de un problema. En general, se trata de encontrar el método más “eficiente”, no siendo baladí el modo de medir dicha eficiencia. Para resolver esta circunstancia, en la década de los 70 numerosos científicos se interesaron por la complejidad computacional de los problemas y los algoritmos. En muchos casos se asimila el rendimiento algorítmico a la medida del tiempo medio de ejecución empleado por un procedimiento para completar su operación con un conjunto de datos. Además, es posible relacionar el esfuerzo de cálculo con la dimensión del problema a resolver.

Un algoritmo muestra una complejidad polinómica si necesita un tiempo O(nk), donde n muestra la dimensión de entrada y k es una constante independiente de n. Si la función que denota la complejidad no está acotada por un polinomio, el algoritmo presenta una complejidad en tiempo exponencial.

 Un problema de decisión es aquel que puede ser contestado con una afirmación o una negación. Llamemos P a la clase de problemas de decisión que pueden ser resueltos en tiempo cálculo que crece de forma polinomial ante incrementos lineales del número de elementos que intervienen, y NP aquellos solubles en un tiempo polinomial indeterminado, es decir, que se puede resolver en tiempo polinomial con una máquina Turing no determinística (ordenador). Un ordenador no determinístico puede ser contemplado como un autómata capaz de ejecutar un número ilimitado (pero finito) de ejecuciones en paralelo. Sólo los problemas en P son resolubles eficientemente mediante algoritmos, no conociéndose un procedimiento polinomial de resolución para los NP, siendo obvio que P pertenezca NP. Si lo contrario también ocurriera, P pertenecería a NP, querría decir que para la mayoría de los problemas de interés existen algoritmos eficientes que los resolvieran. Sin embargo, no se conoce la forma de demostrar que la igualdad P=NP sea cierta, ni tampoco que haya problemas en NP que no estén en P, es decir, la existencia de algún problema en NP que no se pueda resolver en tiempo polinómico (ver Díaz et al., 1996).

Un problema X se dice que es NP-completo (NPC) si (más…)

Comunicaciones presentadas al congreso MAEB 2015

Imagen1

A continuación vamos a presentar brevemente los resúmenes que enviamos al Congreso Nacional sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados (MAEB). Este Congreso pretende ser un foro de encuentro, discusión y transferencia de conocimiento entre investigadores en el campo de las metaheurísticas y los algoritmos bioinspirados, con el fin de presentar e intercambiar experiencias y resultados.

La X edición, MAEB2015, se celebrará en Mérida-Almendralejo, durante los días 4 al 6 de Febrero de 2015, y está organizada por el Centro Universitario de Mérida perteneciente a la Universidad de Extremadura. Las áreas temáticas integradas en el congreso incluyen estudios teóricos, aplicaciones prácticas, experiencias docentes y desarrollos en el campo de investigación en optimización heurística (información detallada en el apartado de llamada a la participación). Los autores agradecen el aporte financiero realizado para este trabajo por el Ministerio de Ciencia e Innovación (Proyecto de Investigación BIA2011-23602) y por la Universitat Politècnica de València (Proyecto de Investigación SP20120341).

Anfiteatro de Mérida

GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2015). Algoritmo híbrido de enjambre de luciérnagas y aceptación por umbrales para diseño de vigas. X Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados – MAEB 2015, 4-6 de febrero, Mérida.
Este estudio convierte el diseño estructural en una optimización de variables discretas. Se propone un algoritmo híbrido de enjambre de luciérnagas para buscar soluciones con menores emisiones totales y anuales. El algoritmo combina la búsqueda colectiva de la optimización de enjambre luciérnagas “glowworm swarm optimization“(GSO) y la capacidad de búsqueda local del umbral de aceptación “threshold accepting” (TA). La estructura propuesta es una viga de hormigón en doble T biapoyada definida por 20 variables. Se estudia la resistencia del hormigón desde 30MPa hasta 100MPa. Esta comunicación  propone un método para calibrar los parámetros del algoritmo con independencia de la función objetivo y del tamaño del enjambre. Los resultados muestran que TAGSO consigue  diseños de vigas que emiten un 25% menos de CO2. La optimización de las emisiones anuales reduce la cantidad de CO2 al año en un 61% con un incremento total de las emisiones de CO2 del 9%.

Puente Romano

MARTÍ, J.V.; YEPES, V.; GARCÍA-SEGURA, T. (2015). Aplicación de metaheurísticas en la optimización de pasos superiores de carreteras. X Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados – MAEB 2015, 4-6 de febrero, Mérida.
El artículo se ocupa de la optimización económica de los tableros de los pasos superiores de carreteras formados  por una losa de hormigón ejecutada in situ y dos vigas artesa prefabricadas de hormigón pretensado autocompactable. Se comprueba la eficacia de las distintas metaheurísticas aplicadas en la optimización: “descent local search” (DLS), “simulated annealing” (SA), “threshold accepting” (TA), “genetic algoritms” (GA) y “memetic algorithms” (MA). Los cálculos de las tensiones y de sus envolventes, son programados en lenguaje fortran directamente por los autores. Los algoritmos de optimización heurística se aplican a un tablero de 35 m de  luz y 12 m de ancho. Los parámetros que definen la forma de la sección de la viga se adaptan a los  moldes de una instalación de prefabricados. El ejemplo que se analiza consta de 59 variables discretas. El módulo de la evaluación incluye los estados límite último y de servicio que se aplican comúnmente para estas estructuras: flexión, cortante, torsor, fisuración, flechas, etc. Los algoritmos SA y TA se han calibrado previamente a partir del DLS, y el MA a partir del GA y del SA. Cada heurística se procesa nueve veces, obteniéndose información estadística sobre el valor mínimo, el medio y las desviaciones. Se realiza un análisis del rendimiento de las distintas heurísticas, basado en un estudio de las soluciones Pareto-óptimas entre tiempo de ejecución y rendimiento. Los mejores resultados se obtienen para el SA y el TA, siendo el coste mínimo de 108008 €, correspondiente al SA. Finalmente, entre las principales conclusiones de este estudio, destaca que las soluciones y los tiempos de proceso computacional son tales, que estos métodos se pueden aplicar de un modo práctico a casos reales, y que el conocimiento derivado del uso de estos algoritmos permiten recomendar rangos de valores para emplearlos en el diseño optimizado de estas estructuras y en su aplicación para los predimensionados de las variables.

Acueducto de Los Milagros

YEPES, V.; MARTÍ, J.V. (2015). Teoría del valor extremo como criterio de parada en la optimización heurística de puentes. X Congreso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados – MAEB 2015, 4-6 de febrero, Mérida.
El artículo establece un criterio de parada para un algoritmo multiarranque basado en el recocido simulado aplicado a la optimización de losas de puentes de vigas prefabricadas de hormigón pretensado. Para ello se ha comprobado que los óptimos locales encontrados constituyen valores extremos que ajustan a una función Weibull de tres parámetros, siendo el de posición, γ, una estimación del óptimo global que puede alcanzar el algoritmo. Se puede estimar un intervalo de confianza para γ ajustando una distribución Weibull a muestras de óptimos locales extraídas mediante una técnica bootstrap de los óptimos disponibles. El algoritmo multiarranque se detendrá cuando se acote el intervalo de confianza y la diferencia entre el menor coste encontrado y el teórico ajustado a dicha función Weibull.
5 febrero, 2015
  Comentarios
|   Etiquetas: ,  ,  ,  ,  |  

Universidad Politécnica de Valencia