UPV



Resultados de la búsqueda By Etiquetas: investigacion-operativa


¿Qué es la investigación operativa?

La investigación de operaciones o investigación operativa es una rama de las matemáticas que consiste en el uso de modelos matemáticos, estadística y algoritmos con objeto de modelar y resolver problemas complejos  determinando la solución óptima y permitiendo, de este modo, tomar decisiones.  Frecuentemente trata del estudio de complejos sistemas reales, con la finalidad de mejorar (u optimizar) su funcionamiento. La investigación de operaciones permite el análisis de la toma de decisiones teniendo en cuenta la escasez de recursos, para determinar cómo se puede optimizar un objetivo definido, como la maximización de los beneficios o la minimización de costos.

Aunque su nacimiento como ciencia se establece durante la Segunda Guerra Mundial y debe su nombre a las operaciones militares, los verdaderos orígenes de la Investigación Operativa se remontan mucho más atrás en el tiempo, hasta el siglo XVII. Esta disciplina nació en Inglaterra durante la Segunda Guerra Mundial como estrategia para encontrar soluciones a problemas militares, para ello fue necesario crear un Grupo de Investigación de Operaciones Militares conformado por un grupo de científicos multidisciplinares. Al terminar la guerra este método fue empleado en darle solución a problemas generales como el control de inventarios, asignación de recursos, líneas de espera, entre otros. Esta técnica cumplió sus objetivos en la década de los cincuenta y sesenta, hasta su desarrollo total en la actualidad. Sin embargo su auge es debido, en su mayor parte, al gran desarrollo de la informática, gracias a la cual es posible resolver problemas en la práctica y obtener soluciones que de otra forma conllevarían un enorme tiempo de cálculo. Debido a este éxito, la Investigación Operativa  se extendió a otros campos tales como la industria, física, informática, economía, estadística y probabilidad, ecología, educación, servicio social, …, siendo hoy en día utilizada prácticamente en todas las áreas. Algunos de los promotores más importantes de la filosofía y aplicación de la investigación de operaciones son C.W. Churchman, R.L. Ackoff y R. Bellman. Actualmente la Investigación Operativa incluye gran cantidad de ramas como la Programación Lineal, Programación No Lineal, Programación Dinámica, Simulación, Teoría de Colas, Teoría de Inventarios, Teoría de Grafos, etc.

Os presento ahora un vídeo, que no llega a 3 minutos de duración, para que, tras su visionado, contestéis a las siguientes preguntas:

1        ¿Cómo definirías, con tus propias palabras, lo que es la Investigación de las Operaciones?

2        ¿Qué tiene que ver la Investigación de las Operaciones con la toma de decisiones?

3        ¿Cómo definirías con tus propias palabras lo que es un modelo matemático?

4        ¿Qué motivos pueden hacer que un modelo teórico sea diferente a la realidad que desea representar?

 

3 octubre, 2016
 
|   Etiquetas: ,  ,  |  

La logística y los problemas de distribución física

Empezamos una serie de posts que van a tratar aspectos relacionados con el transporte, la logística, la distribución de mercancías, la investigación de las operaciones y, en definitiva, la toma de decisiones en las empresas. Como siempre, el objeto es divulgativo, abriendo puertas a la reflexión y no pretendiendo, ni mucho menos, abarcar todos los aspectos relativos a un tema determinado. Empezamos, pues.

El National Council of Physical Distribution Management definió, en 1979 (ver Ballou, 1991) la gestión de la distribución física como “todas aquellas actividades encaminadas a la planificación, implementación y control de un flujo creciente de materias primas, recursos de producción y productos finales desde el punto de origen al de consumo”. Entre estas tareas se encuentran el servicio al cliente, la previsión de la demanda, el control de inventarios, los servicios de reparación, el manejo de mercancías, el procesamiento de pedidos, la selección de la ubicación geográfica de las fábricas y los almacenes, las compras, el empaquetado de productos, el tratamiento de las mercancías devueltas, la recuperación y tratamiento de desperdicios, la distribución y el transporte, y el almacenamiento. Sin embargo, otros autores prefieren emplear el término de logística empresarial. (más…)

2 mayo, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  |  

¿Por qué son tan complicados los problemas de distribución física?

Aspecto de diversas soluciones al problema de rutas

Los problemas de distribución física consisten básicamente en asignar una ruta a cada vehículo de una flota para repartir o recoger mercancías. Los clientes se localizan en puntos o arcos y a su vez pueden presentar horarios de servicio determinados; el problema consiste en establecer secuencias de clientes y programar los horarios de los vehículos de manera óptima. Los problemas reales de transporte son extraordinariamente variados. Yepes (2002) propone una clasificación que contiene un mínimo de 8,8·109 combinaciones posibles de modelos de distribución. Si alguien fuese capaz de describir en un segundo cada uno de ellos, tardaría cerca de 280 años en enunciarlos todos. La investigación científica se ha centrado, por tanto, en un grupo muy reducido de modelos teóricos que además tienden a simplificar excesivamente los problemas reales. Son típicos problemas de optimización matemática combinatoria. (más…)

16 marzo, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  |  

Optimización y programación matemática

 

George Bernard Dantzig (1914-2005), “padre de la programación lineal”

Optimizar significa buscar la mejor manera de realizar una actividad, y en términos matemáticos, hallar el máximo o mínimo de una cierta función, definida en algún dominio. La optimización constituye un proceso para encontrar la mejor solución de un problema donde “lo mejor” se concilia con criterios establecidos previamente.

La programación matemática constituye un campo amplio de estudio que se ocupa de la teoría, aplicaciones y métodos computacionales para resolver los problemas de optimización condicionada. En estos modelos se busca el extremo de una función objetivo sometida a un conjunto de restricciones que deben cumplirse necesariamente. Las situaciones que pueden afrontarse con la programación matemática se suelen presentar en ingeniería, empresas comerciales y en ciencias sociales y físicas.

Con carácter general, un programa matemático (ver Minoux, 1986) consiste en un problema de optimización sujeto a restricciones en  de la forma:

 

El vector  x tiene como componentes (más…)

20 febrero, 2015
 
|   Etiquetas: ,  ,  ,  ,  ,  ,  ,  |  

¿Qué es la optimización combinatoria?

Problema de las rutas de vehículos. Ejemplo de optimización combinatoria.

Los problemas de optimización en los que las variables de decisión son enteras, es decir, donde el espacio de soluciones está formado por ordenaciones o subconjuntos de números naturales, reciben el nombre de problemas de optimización combinatoria. En este caso, se trata de hallar el mejor valor de entre un número finito o numerable de soluciones viables. Sin embargo la enumeración de este conjunto resulta prácticamente imposible, aún para problemas de tamaño moderado.

Las raíces históricas de la optimización combinatoria subyacen en ciertos problemas económicos: la planificación y gestión de operaciones y el uso eficiente de los recursos. Pronto comenzaron a modelizarse de esta manera aplicaciones más técnicas, y hoy vemos problemas de optimización discreta en diversas áreas: informática, gestión logística (rutas, almacenaje), telecomunicaciones, ingeniería, etc., así como para tareas variadas como el diseño de campañas de marketing, la planificación de inversiones, la división de áreas en distritos políticos, la secuenciación de genes, la clasificación de plantas y animales, el diseño de nuevas moléculas, el trazado de redes de comunicaciones, el posicionamiento de satélites, la determinación del tamaño de vehículos y las rutas de medios de transporte, la asignación de trabajadores a tareas, la construcción de códigos seguros, el diseño de circuitos electrónicos, etc. (Yepes, 2002). La trascendencia de estos modelos, además del elevado número de aplicaciones, estriba en el hecho de que “contiene los dos elementos que hacen atractivo un problema a los matemáticos: planteamiento sencillo y dificultad de resolución” (Garfinkel, 1985). En Grötschel y Lobas (1993) se enumeran otros campos en los cuales pueden utilizarse las técnicas de optimización combinatoria.

REFERENCIAS

GARFINKEL, R.S. (1985). Motivation and Modeling, in LAWLER, E.L.; LENSTRA, J.K.; RINNOOY KAN, A.H.G.; SHMOYS, D.B. (eds.) The Traveling Salesman Problem: A Guide Tour of Combinatorial Optimization. Wiley. Chichester.

GRÖTSCHEL, M.; LÓVASZ, L. (1993). Combinatorial Optimization: A Survey. Technical Report 93-29. DIMACS, May.

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2. (pdf)

¿Qué es un algoritmo?

Algoritmo de Euclides

Un algoritmo es un conjunto prescrito de reglas o instrucciones bien definidas para la resolución de un problema. En general, se trata de encontrar el método más “eficiente”, no siendo baladí el modo de medir dicha eficiencia. Para resolver esta circunstancia, en la década de los 70 numerosos científicos se interesaron por la complejidad computacional de los problemas y los algoritmos. En muchos casos se asimila el rendimiento algorítmico a la medida del tiempo medio de ejecución empleado por un procedimiento para completar su operación con un conjunto de datos. Además, es posible relacionar el esfuerzo de cálculo con la dimensión del problema a resolver.

Un algoritmo muestra una complejidad polinómica si necesita un tiempo O(nk), donde n muestra la dimensión de entrada y k es una constante independiente de n. Si la función que denota la complejidad no está acotada por un polinomio, el algoritmo presenta una complejidad en tiempo exponencial.

 Un problema de decisión es aquel que puede ser contestado con una afirmación o una negación. Llamemos P a la clase de problemas de decisión que pueden ser resueltos en tiempo cálculo que crece de forma polinomial ante incrementos lineales del número de elementos que intervienen, y NP aquellos solubles en un tiempo polinomial indeterminado, es decir, que se puede resolver en tiempo polinomial con una máquina Turing no determinística (ordenador). Un ordenador no determinístico puede ser contemplado como un autómata capaz de ejecutar un número ilimitado (pero finito) de ejecuciones en paralelo. Sólo los problemas en P son resolubles eficientemente mediante algoritmos, no conociéndose un procedimiento polinomial de resolución para los NP, siendo obvio que P pertenezca NP. Si lo contrario también ocurriera, P pertenecería a NP, querría decir que para la mayoría de los problemas de interés existen algoritmos eficientes que los resolvieran. Sin embargo, no se conoce la forma de demostrar que la igualdad P=NP sea cierta, ni tampoco que haya problemas en NP que no estén en P, es decir, la existencia de algún problema en NP que no se pueda resolver en tiempo polinómico (ver Díaz et al., 1996).

Un problema X se dice que es NP-completo (NPC) si (más…)

Universidad Politécnica de Valencia